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PWA F-100    Siemens  Power Generation 
340 MWe   

Gas Turbines 

Schematic 
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Fuel Efficiency in the Aeroturbine Industry 
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Replacing coal with natural gas turbines 
decreases CO2,  Hg, radioactive and dust 
emissions, and is also more energy efficient. 

Gas Turbines Offer High Power Densities and Route to Quickly Displace Coal 

50 MWe GE.  LM6000 
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Ashby, Materials and the Environment, Elsevier 

NB. 30% of natural gas is used to produce electricity.  1% improvement  >  all renewables 

What 1% Improvement in Gas Turbines Could Buy Us 

2009 data 
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Dimiduk and Perepezko, MRS Bull 639 2003 

Output  Power  Depends on  Turbine Inlet (T4) Temperature 
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Thermal barrier coatings have enabled a jump 
 in turbine temperatures and energy efficiencies 

Increase in Turbine (T4) Temperatures over Fifty Years 

Yttria-stabilized 
zirconia coatings 

~ 150 – 500 micron thick 
 

Thermal gradient 
 ~ 150-200 K/mm 
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Kingery et al, ca 1955 

Thermal Conductivity of Oxides 

Zirconias -- Levi 

Thermal conductivity asymptotes to a minimum value at high temperatures 
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Approach:  
 Adopt Debye equation and express it’s high-temperature limit in terms 
of measurable physical parameters. 
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The Minimum Thermal Conductivity 
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High-Temperature Thermal Conductivity Scaling 
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Oxides with Low Conductivity Discovered in Last Decade 
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Tetragonal zirconia SrTiO3 

Grain size effect on thermal conductivity can be significant at low temperatures but  
decreases with increasing temperatures until at highest temperatures there is little or 
no effect 

Examples of Grain Size Effect 

Wan et al 
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Pitek and Levi, Surf. & Coatings Tech. 201 (2007) 6044-6050 
Phase diagram : Leckie et al. 2010 

YTaO4-doped ZrO2 

Transformable (t -> m) 

Non-transformable tetragonal  
Fracture toughness increases              
with increasing YTO4 

Lower thermal conductivity than 7YSZ, but 
no ferroelastic toughening 
at high temperature  

Meta-stable tetragonal (t’) 7YSZ  
• Low Y : t’ -> monoclinic 
• High Y : t’ -> cubic 

 

Y-doped ZrO2 

F = fluorite (cubic) 
O = orthorhombic 
t = tetragonal 

o 

ZrO2 solid solution 
In YTaO4  

The  Y-Ta-Zr-O  System 

High temperature M-T in YTaO4  
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Particular interest in 
compositions along 
 ZrO2-YTaO4 Binary 

Y3+
1-x Ta5+

1-x Zr4+
2xO2-

2 compositions  
do not require structural vacancies 
to be stable. 
 
Consequently, no conductivity 
decrease by oxygen vacancies is 
possible. 

The  ZrO2 – YTaO4 Pseudo-Binary 
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Multi-phase  Yttria-Tantala-Zirconia with Low Thermal Conductivity 
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Variation of Thermal Conductivity with Composition 

Obtained by interpolation from conductivity measured at different compositions 
Limarga et al, J Euro. Ceram Soc, 2014 
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• YTaO4 undergoes reversible phase transformation, m – t, in which is, evidently, 
ferroelastic, involving atomic displacement and twinning, and maybe useful as a 
high temperature toughening mechanism. 

• Effect of ZrO2 solid solution in YTaO4 : 
– Stabilizes  the tetragonal phases, decreasing the t-m transformation temperature 

and increasing the fraction of non-transformable tetragonal phases retained at 
room temperature 

– Solid solution creates mass disorder that decreases the phonon mean free path.   
Evident in: 
• the increase in Raman peaks width 
• the decrease in thermal conductivity 

– Suppresses grain growth 
– Lower thermal conductivity 
 

Phase Transformations in (Y,Ta)1-xZrxO4-2x 
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Zr4+ Stabilizes the high-temperature Tetragonal Phase  

NB. Some tetragonal retained 

Phase Transformation in  YTaO4  : Effect of ZrO2 

Tetragonal 

Monoclinic 
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The Thermal Management Challenge 
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Show SEM of TBC 

Porosity Reduces Conductivity and Scatters Thermal Radiation 
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Temperature Distribution For Different Coating Designs 

Liguo Chen, Phd Thesis 
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Temperature Distribution For Different Coating Designs 

Liguo Chen, Phd Thesis 
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Optical properties of YSZ 

TBCs are optically turbid media – highly scattering but are translucent 
Hence some light can penetrate through to the TGO underneath the TBC 

Basis of Optical Probing of a TBC 
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 Luminescent ions can be 
incorporated into crystal 
structure of the coating material 
to act as sensors 
 
 Luminescence lifetime is  
known to be temperature 
sensitive 
 
• Because of translucency of 
TBC materials, visible lasers and 
luminescence can be used to 
measure temperatures of sensors 
buried in a coating 
 
• Multiple sensor layers can be 
applied to measure the 
temperature at any depth 

Luminescence Based Temperature and Damage Sensor 

Non-contact method 
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TBC 

Metal 

Example: Eu Doped TBC Sensor Layer 

Superimposition of white light and UV luminescence images 
D. R. Clarke, Harvard University,  Jan 2015 



µ 

700°C 

Calibration of luminescence lifetime provides basis for temperature measurements 
on engine components 

1100°C 

10 micron Eu-doped sensor layer in a EB-PVD YSZ coating 

Temperature Sensing Using Luminescence Lifetimes 
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TBC Interface Temperature in a Thermal Gradient 

with D. Zhu and J. Eldridge, NASA Glenn. Surf Coat Tech Vol 201 (2006) 
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TBC thickness: 146 µm 

TBC 

alloy 

TBC Interface Temperature in a Thermal Gradient 
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SWRI  report 

“understood” 

“not yet 
understood” 

Effect of Thermal Cycling on Coating Life 
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Life of TBC is often limited by morphological instability (“rumpling”) of the metal bond coat 
on thermal cycling causing incompatibilities with TBC. More stable alloys needed 

Thermal Cycling Instability 

          Coating surface on thermal cycling.  
0-300 cycles to 1150oC in air.  ~ 400 micron field of view 
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Low magnification 

TBC Interface after 100 One-hour Cycles to 1150oC 
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Evolution of  Interface  Separation Leading to Failure 

Tolpygo, Murphy, Clarke 
D. R. Clarke, Harvard University,  Jan 2015 



Key concepts: 
•  All alumina contains small (ppm) concentrations of Cr3+ in solid solution 
•  Each Cr3+ ion emits photons with an energy dependent on its own local strain environment 
•  Frequency shift proportional to mean stress in a polycrystalline alumina 

mR σν 62.72 =∆

R-line Luminescence and Piezospectroscopy 
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Optical properties of YSZ 

TBCs are optically turbid media – highly scattering but translucent 
Hence some light can penetrate through to the TGO underneath the TBC 

Basis of Optical Probing of a TBC 
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•  Illuminate coating with uniform laser beam, 514.3 nm 
•  Collect R-line luminescence on a CCD through a tunable Fabry-Perot filter 
•  Tune filter through the luminescence frequency band recording an image at each frequency step 
•  Invert spectral images to determine R1 shift and hence stress at each image pixel 
•  Map stress distribution over coating 

Multi-spectral Luminescence Imaging to Reveal Stress Variations 

D. R. Clarke, Harvard University,  Jan 2015 



WA12 WA15 
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Green areas correspond to areas where the mean stress below 0.7 GPa 

Percolation 
of separated  
regions ! 

Evolution of  Interface  Damage with Thermal Cycling 
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Defect Rearrangement Model (Wachman) predicts that damping peak occurs at: 

Vibrational Damping Due to Oxygen Hopping 

Activation energy for hopping 
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The Next Materials Frontier:  Ceramic Matrix Composites 

• Higher temperature capability  

• High corrosion resistance 

• Toughening mechanisms: 

- Microcracking 

- Fiber pull out 

- Crack bridging  

• 90% cooling air reduction 

• Reduced emissions 
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Future  Limits  To  Gas  Turbines: Unresolved Challenges 

• Atmospheric pollution from engine exhausts 
• Chemical reactions produce NOx  -- will limit max combustion temperature 
 
 
 
 
 
 
 
 
 
 
 

• Melting of ingested sand can erode TBC -- CMAS 
 

• Corrosion of metallic components from pollution in the atmosphere, eg  SO2 
• Many of the metallic alloys in the engine were not designed to resist SO2 corrosion 
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On land-based turbines, NOx   can be reduced by steam injection into combustor 
 

Aerospace turbines might need their own high-temperature catalytic convertor  

NOx Emissions Depend on Combustion Temperature 

D. R. Clarke, Harvard University,  Jan 2015 



SO2 Corrosion Resistance 

Growing problem: rising SO2 levels in air in many cities around the world 

Probably will require extensive modification of bond-coat alloys. 
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SO2 Corrosion Resistance 

Growing problem: rising SO2 levels in air in many cities around the world. 
Current bond-coat alloys were designed for much lower SO2 levels. 
Solution:  probably will require extensive modification of bond-coat alloys. 

D. R. Clarke, Harvard University,  Jan 2015 



• Low thermal conductivity at high temperatures is a necessary but not sufficient criterion. 

• Thermal conductivity at low temperatures is relatively un-important and not a good guide to 

 high-temperature conductivity 

• High fracture toughness at high temperatures is also a necessary requirement. 

• Thermal barrier coatings are part of a dynamically evolving and interacting system. 

• Bond-coat and superalloy must also be morphologically stable, especially on thermal cycling 

 

 

• Development of in-situ monitoring, particularly of coating temperatures and damage. 

• Operation in air containing higher SO2 concentrations. 

• Coatings for turbines using alternative fuels. 

• Plenty of inter-disciplinary research and development opportunities 

• Success will require a large scale, multidisciplinary approach and extensive collaborations 

Summary and Future Directions 

Identifying the next generation thermal barrier coatings remains a major challenge 

Future Directions 

D. R. Clarke, Harvard University,  Jan 2015 
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