The Compliant Capacitor

David R. Clarke

School of Engineering and Applied Sciences Harvard University clarke@seas.harvard.edu

Partial support from National Science Foundation

KAUST, February 2015

Materials Design for Compatibility with the Human Body

- Most materials development has been driven by human needs
 - Shelter, defense, transportation, entertainment
 - Strong, stiff, unyielding, hard
- Some materials have been developed for replacing structural body parts
 - Artificial teeth, hip implants.....
- Only now are materials being developed that are compatible with humans and extending their capabilities
- soft, compliant, conformable, capable of a range of motion......

The Human Compatibility Materials Space

NB. Strictly, skin is a viscoelastic material not elastic so it has no true elastic modulus. But one can speak about instantaneous modulus

Muscles and Actuators

We use muscles for

- walking and running
- dancing

.

- swimming
- getting up and sitting down
- moving our eyes
- swinging our arms
- turning our head
- gripping, holding and letting go
 - Frontalis Temporalis Orbicularis ocul Usuperioris Sygomaticus Maseter Buccinator Risorius Platysma Depressor anguli oris Depressor anguli oris

actuator type	$\begin{array}{c} {\rm maximum}\\ {\rm actuation \ strain}\\ \epsilon_{\rm max}[-] \end{array}$	$\begin{array}{c} \text{maximum} \\ \text{actuation stress} \\ \sigma_{\text{max}} \text{ (MPa)} \end{array}$	$\begin{array}{c} \text{modulus} \\ E \ (\text{GPa}) \end{array}$
low strain piezoelectric high strain piezoelectric piezoelectric polymer thermal expansion (10 K) thermal expansion (100 K) magnetostrictor shape memory alloy moving coil transducer solenoid	$5 \times 10^{-6} - 3 \times 10^{-5}$ $5 \times 10^{-5} - 2 \times 10^{-4}$ $2 \times 10^{-4} - 1 \times 10^{-3}$ $9 \times 10^{-5} - 3 \times 10^{-4}$ $9 \times 10^{-4} - 3 \times 10^{-3}$ $6 \times 10^{-4} - 2 \times 10^{-3}$ $7 \times 10^{-3} - 7 \times 10^{-2}$ $1 \times 10^{-2} - 1 \times 10^{-1}$ $1 \times 10^{-1} - 4 \times 10^{-1}$	$\begin{array}{r} 1-3\\ 4-9\\ 0.5-5\\ 20-50\\ 200-500\\ 90-200\\ 100-700\\ 4\times10^{-3}-5\times10^{-2}\\ 4\times10^{-2}-1\times10^{-1}\end{array}$	$\begin{array}{r} 90-300\\ 50-80\\ 2-10\\ 70-300\\ 70-300\\ 40-200\\ 30-90\\ 4\times10^{-5}-5\times10^{-3}\\ 3\times10^{-4}-1\times10^{-3}\\ \end{array}$
muscle pneumatic hydraulic	$3 \times 10^{-1} - 7 \times 10^{-1}$ $1 \times 10^{-1} - 1 \times 10^{0}$ $1 \times 10^{-1} - 1 \times 10^{0}$	$0.1-0.4 \\ 0.5-0.9 \\ 20-70$	$5 \times 10^{-3} - 2 \times 10^{-2}$ $5 \times 10^{-4} - 9 \times 10^{-4}$ 2 - 3

Huber et al., Proc. R Soc. A453 2185 (1997)

The Humble Capacitor

Capacitors

What they do: These store and release electrical energy. They are widely used to absorb electronic noise and detect signals of set frequencies.

Size: 0.4mm x 0.2mm to 1mm x 0.5mm Number per phone: 700

.....

Notes: Numbers per smartphone are approximate. S Source: Murata Manufacturing

The Humble Capacitor: The Essential Physics

A capacitor is usually used to store electrical energy so it requires a large dielectric constant and large area. Electrical energy stored is:

Capacitance:
$$C = \frac{Q}{V} = \frac{\sigma_s A}{Eh} = \varepsilon \varepsilon_o \frac{A}{h}$$

Attractive force between opposite charges is: $P_c = \frac{1}{2} \varepsilon \varepsilon_o E^2$

induces electrostrictive strain that for most dielectrics is ppm, ie nanometers

Freeing the Capacitor -- The Compliant Capacitor

Applying a voltage to a capacitor produces opposite charges in the electrodes across the dielectric.

Coulombic attraction between the charges creates a Maxwell force that compresses the dielectric (equivalent to electrostatic actuator in MEMS)

$$P = \sigma_z = \varepsilon \varepsilon_o E^2 = \varepsilon \varepsilon_o \left(\frac{V}{h}\right)^2 \qquad \text{produces strain} \quad s_z = -\frac{\sigma_z}{Y}$$

Elastomers are incompressible, ie volume change = O. So, if reduce thickness, expands laterally

$$\Delta V = 0 = s_x + s_y + s_z \quad : \qquad s_x = s_y = \frac{P}{2Y} = \varepsilon \varepsilon_o \frac{V^2}{2Y h^2}$$

Freeing the Capacitor -- The Compliant Capacitor

Applying a voltage to a capacitor produces opposite charges in the electrodes across the dielectric.

Coulombic attraction between the charges creates a Maxwell force that compresses the dielectric (equivalent to electrostatic actuator in MEMS)

$$P = \sigma_z = \varepsilon \varepsilon_o E^2 = \varepsilon \varepsilon_o \left(\frac{V}{h}\right)^2 \qquad \text{produces strain} \qquad s_z = -\frac{\sigma_z}{Y}$$

Elastomers are incompressible, ie volume change = O. So, expands laterally

Actuation stretch
$$\lambda \approx \frac{P}{2Y} \approx \varepsilon \varepsilon_o \frac{V^2}{2Y h^2}$$
 Voltage
Stiffness Thickness

(million times smaller than standard capacitors)

Replacing a ceramic dielectric with an elastomer leads to a million times greater strain !

How much can the compliant capacitor stretch?

VHB 4905 elastomer (Acrylic-based) Prestretched to 250%

Quantify actuator deformation, stretch, λ

$$\lambda = \frac{r}{r_o}$$

As elastomers are incompressible, so

$$\lambda^2 = H / h$$

Carbon nanotube electrodes

During actuation, the voltage increased at a rate of 20 V/s until electrical breakdown.

$$\lambda = \frac{r}{r_o} \approx 2$$

The Molecular Structure of Elastomers

- Loosely cross-linked, long chain molecules
- •Transparent materials
- Highly insulating
- Dielectric constant ~ 2.6
- On stretching chains straighten
- Huge, nonlinear strain capabilities
- Incompressible Poisson ratio 0.5

Typical elastomers:

- Natural rubber (latex)
- PDMS
- Arcylic (3M VHB 7905)
- Polyurethane

Compliant capacitor as an electrically driven artificial muscle

A Conventional Electrically Focusing Camera

The Human Eye: Focusing

Focusing is associated with change in shape of the ocular lens

© Copyright. 2012. University of Waikato. All Rights Reserved.

An Electrically Tunable, Adaptive Lens

An alternative approach:

Change focal length of the lens by changing its curvature

Solution:

Constant volume liquid droplet contained between transparent sheets whose areas can be altered with an applied voltage.

Requires: Transparent, compliant electrodes

Demonstration of a Tunable Lens

High Speed Response

0 V and 4.5 kV The scale is in mm.

Dynamic Focal Range

Calculating the dynamic range of focal length:

- Constant volume
- Spherical curvature, h/a < 0.25
- DEA membrane, $D2 \rightarrow curvature decrease$
- Passive membrane, $D1 \rightarrow curvature$ increase

$$\Delta f_{max} = \frac{f_{max} - f_o}{f_o} x \ 100\%$$

Diameter ratio, D2/D1

Color indicate maximum focal change

Dynamic Focal Range Depends on Diameter Differences

Color indicate maximum focal change

The maximum focal length variation (Δf_{max}) depend on relative diameter of the membranes (D_1/D_2), but independent of the refractive index.

The Compliant Capacitor as a Machine Element

Machine Elements of Soft Robotics

- Actuators
 - Linear actuators
 - Biaxial actuators
- Rotary drives
- Soft clamps
- •

Devising A Uniaxial Actuator

Complaint capacitor creates a biaxial strain.

How do we use it to create uniaxial strain ?

Apply through thickness electric voltage. Equi-biaxial strain

Insert aligned and parallel stiffeners Apply electric voltage Elongation perpendicular to stiffeners

Uni-axial Fiber Stiffening of Dielectric Elastomer

Cylindrical geometry chosen to minimize electrical breakdown at edges

Uni-axial Actuator with no Stiffening

Cylindrical Actuator Using Fiber Stiffened Elastomer

Uniaxial Actuator

Mimicking Finger Action

Fingers gripping an object

Fingers striking piano keys

Mechanical element analog: unimorph or bimetallic strip

The Simplest Robotics Element: The Unimorph

End deflection

Blocking force

Dielectric Elastomer Unimorph Actuation

NB. Transparent electrodes

Curling instability due to field induced curvature in two mutually perpendicular directions

The Dielectric Elastomer Based Unimorph

Expansion parallel and perpendicular to beam axis, causes bending in two perpendicular directions. As the strains can be large, the out-of-plane bending can be large.

Unimorph Actuation

Observations

Finite element computations

Aligned, Parallel Fibers Introduce Anisotropic Stiffness

Aligned fibers produces higher stiffness parallel to fibers than perpendicular to them. $E_{nylon} >> E_{VHB.}$ This breaks the flexural deformation response symmetry of the beam

Simulations Show Suppression of Curling

Simulations Show Suppression of Curling

A single fiber can be sufficient to break deformation symmetry

Fiber Stiffened Dielectric Elastomer Based Unimorph

Optical Micrograph:

An Inchworm Based on Fiber Stiffened Unimorph

Effect of Elastic Anisotropy in Unimorphs

Low volume fraction of aligned fibers create elastic anisotropy and alters response

A Simple Soft Robotics Component: The Gripper

Mechanical Energy Harvesting with a Compliant Capacitor

Energy Harvesting Schemes

ıW	10µW	100µW	/ 1mW	10mW	100mW	1W+
Watch ~5µW	Smoke detector 6µW	Occupancy motion detector 28µW	br LCD clock ~500µW	Glass reakage nW-32mW 37mW	Headphones ~60mW	Smartphon ~1W
RF			GSM 900 MHz WiFi	0.1 0.0	μW/cm² 01 μW/cm²	
Vibrati	ion		~Hz–human ~kHz–machines	~4 s ~80	μW/cm³)0 μW/cm³	
Therm	al		Human Industrial	60 ~1-	µW/cm² 10 mW/cm²	
Light			Outdoor Indoor	100 100) mW/cm²) μW/cm²	
Energ	y Source		Characteristic	s Hai	rvested Power	

Small-Scale Energy Harvesting

Fig. 2. Shrinking IC chip line geometries and lower power consumption levels come at a time when energy-harvesting devices are becoming more effective and practical. (Source: IDTechEx).

Harvesting Electrical Energy Through Mechanical Work

elastic energy: $\Delta E_M = \oint P \, dL$ Convert elastic energy energy to electric energy through change in capacitance

Recall: Electrical energy of a capacitor is:

$$E_{electrical} = \frac{\varepsilon \varepsilon_o V^2}{2h^2} = \frac{C V^2}{2}$$

Essentially a device for transferring charge from a low to high voltage – A voltage Step-Up Transformer

What is Optimum Mechanical Loading Configuration ?

Harvesting Mechanical Energy: Energy Cycle

Equi-biaxial Mechanical Loading Configuration

In our experiments, λ changes in the range from 1.2 to 5.4.

Movie

Top down View:

Side View:

Measured Energy Harvesting Cycles

0.5 Hz cycles

Verification of Stretch Scaling

Model indicates that capacitance scales with fourth-power of stretch under biaxial loading

 $C \propto \lambda^4$

Max stretch is 4.25

Pre-set current limit

800

Representative Generator Cycles

Energy density with cycle number

The average energy density of the first eight cycles is **560J/kg** with a power density of **280W/kg**.

Improved Harvesting Cycle ?

Adv. Mater. 2014, Shian et al., DOI: 10.1002/adma.201402291

Representation in two conjugate work planes

NB. Mechanical energy storage is separated from the subsequent energy conversion so can occur non-uniformly or even intermittantly while energy conversion can occur over a shorter time.

Improved Harvesting Cycle

Adv. Mater. **2014**, Shian et al., DOI: 10.1002/adma.201402291

Complex Shapes From Bi-strips: Pre-straining, Joining and Release Operation

3. Join strips side-by-side.

4. Release stretching force

Release of a narrow bi-strip to form a Hemi-helix

After release

After release and rotating one end ---- a regular helix

Examples of Morphological Shape Transitions

Elastomers Offer Opportunities For New Machines and Devices

- Elastomers are soft, compliant, stretchable
- Elastically compatible with humans
- Ideal for Soft Robotics
- Shape changes can be electrically actuated
- Large scale elastic effects
- Transparent but can be colored
- Combination ideal for new optic and mechanical devices
- Elastomer sheets are mass produced